k^2+18K-63=0

Simple and best practice solution for k^2+18K-63=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2+18K-63=0 equation:



k^2+18-63=0
We add all the numbers together, and all the variables
k^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $

See similar equations:

| 38+b=48 | | 7^x+2=2401 | | -2p+12=-2p-2p | | (16x+5)+(x)=90 | | Y=23x-3 | | 1/2n=5+9 | | 19y-42=22 | | r=1582/6 | | 3(x+5)=2(—6-x)-2x | | 1/5(55-10e)=55 | | 7(x-4)^2-2=54 | | 2x+3(-2x+17)=19 | | 3b=4/5 | | 5y^2+60y+175=0 | | 6(x-7)-7(x-6)=x+6-(x-3 | | (x/x^2-25)-(x+3/x^2-5x)=(-7/x^2+5x) | | 12-2n=8n+2n | | x+1/3=8-x+4/2 | | 7z–5=3z–29 | | 1/4(12-4)+1=3(8x+1) | | 30=6r-24+3r= | | 2/3(1+x)=-1/2x | | x/4=36/48 | | X-1=0y+3=0 | | -2(2x+3)=-4(x+1)-2× | | 16x^2-48x-28=0 | | 8n+3n+4=40 | | 6x+4=82 | | 12d+d-12d=17 | | 9-(2b+9)=-8b-8 | | 6x-(10x+7)=-11 | | (2x+3)(3x+4)=2x(3x+4)+3(3x+4) |

Equations solver categories